Chloroplast FBPsase and SBPsase are thioredoxin-linked enzymes with similar architecture but different evolutionary histories

Desiree D. Gute, Thomas Roret, Stefanie J. Mueller, Jérémy Couturier, Stéphane D. Lemaire, Arnaud Hecker, Tiphaine Dhalenne, Bob B. Buchanan, Ralf Reski, Olivier Einsle, and Jean-Pierre Jacquod

The Calvin–Benson cycle of carbon dioxide fixation in chloroplasts is controlled by light-dependent redox reactions that target specific enzymes. Of the regulatory members of the cycle, our knowledge of sedoheptulose-1,7-bisphosphatase (SBPsase) is particularly scant, despite growing evidence for its importance and link to plant productivity. To help fill this gap, we have purified, crystallized, and characterized the recombinant form of the enzyme together with the better studied fructose-1,6-bisphosphatase (FBPsase), in both cases from the moss Physcomitrella patens (Pp). Overall, the two enzymes resembled their counterparts from seed plants, including oligomeric organization—PpSBPsase is a dimer, and PpFBPsase is a tetramer. The two phosphatases showed striking structural homology to each other, differing primarily in their solvent-exposed surface areas in a manner compatible with their specificity for substrate metabolism (sedoheptulose) and six-carbon (fructose) sugar phosphate substrates. The two enzymes had a similar redox potential for their regulatory redox-active disulfides (−310 mV for PpSBPsase vs. −290 mV for PpFBPsase), requirement for Mg2+ and thioredoxin (TRX) specificity (TRX f > TRX m). Previously known to differ in the position and sequence of their regulatory cysteines, the enzymes unexpectedly showed unique evolutionary histories. The FBPsase gene originated in bacteria in conjunction with the endosymbiotic event giving rise to mitochondria, whereas SBPsase arose from an archaeal gene resident in the eukaryotic host. These findings raise the question of how enzymes with such different evolutionary origins achieved structural similarity and adapted to control by the same light-dependent photosynthetic mechanism—namely ferredoxin, ferredoxin-thioredoxin reductase, and thioredoxin.

In oxygenic photosynthesis, CO2 fixation takes place via the Calvin–Benson cycle consisting of 13 individual reactions that can be separated into carboxylation, reduction, and regeneration phases (1). Considerable effort has focused on a description of the individual enzymes and the overall regulation of the cycle (2, 3). In chloroplasts, the activity of four enzymes of the cycle is linked to light: NADP-glyceraldehyde 3-phosphate dehydrogenase, phosphoribulokinase, fructose-1,6-bisphosphatase (FBPsase), and sedoheptulose-1,7-bisphosphatase (SBPsase). In some plants, Rubisco is similarly regulated indirectly by Rubisco activase. The activity of each of these enzymes is modulated by the ferredoxin/thioredoxin system—a thiol-based mechanism in which photoreduced ferredoxin provides electrons for the reduction of thioredoxin (TRX) by the enzyme ferredoxin-thioredoxin reductase (FTR) (3–5). TRX, in turn, reduces specific disulfides and thereby activates the regulatory members by thiol–disulfide exchange. Chloroplasts contain several typical thioredoxin subtypes (f, m, y, x, and z) with different target preferences (6) as well as a number of proteins containing an atypical TRX active site (7). The ferredoxin/thioredoxin system was uncovered by observing the activation of FBPsase by photoreduced ferredoxin (8)—a finding later extended to SBPsase (9). Due to its high activity and convenient assay, FBPsase was used to explore the system, eventually leading to the identification of FTR and TRX as essential components and to the finding that other photosynthetic enzymes are regulated by this mechanism (10–12). As part of this study, SBPsase, which at the time was considered to be a secondary activity event of FBPsases (e.g., 13, 14), was found to be a separate enzyme in chloroplasts (15). Both phosphatases function in the regeneration stage of the Calvin–Benson cycle. Their natural

Contributed by Bob B. Buchanan, April 22, 2016 (sent for review January 23, 2016; reviewed by Monica Balsera, Hans Eklund, Christine Anne Raines, and Ricardo A. Wolosiuk)

The authors declare no conflict of interest.

Significance

We demonstrate that, although the two phosphatases of the Calvin–Benson cycle of photosynthesis (sedoheptulose-1,7-bisphosphatase (SBPsase) and fructose-1,6-bisphosphatase (FBPsase)) share extensive structural homology, their redox-regulatory disulfides are incorporated in strikingly different positions, in agreement with an independent evolutionary origin of each enzyme. This article compares in detail the structures of the enzymes together with their regulatory and catalytic properties as well as their phylogenies. Significantly, the substrate binding site of SBPsase is larger than that of FBPsase, thus allowing it to accommodate both seven- and six-carbon sugar phosphate substrates, whereas FBPsase is active only with the latter. The data suggest that SBPsase is of archaeal origin, whereas FBPsase is descended from bacteria.

Reviewers: M.B., Instituto de Recursos Naturales y Agrobiologia de Salamanca Consejo Superior de Investigaciones Científicas; H.E., Swedish University of Agricultural Sciences; C.R., University of Essex; and R.A.W., Instituto Leloir. The authors declare no conflict of interest. Data deposition: The crystallography, atomic coordinates, and structure factors reported in this paper have been deposited in the Protein Data Bank, www.pdb.org [PDB ID codes 5IZ1 (PpFBPsase) and 5IZ3 (PpSBPsase)].

www.pnas.org/cgi/doi/10.1073/pnas.1606241113

PNAS | June 14, 2016 | vol. 113 | no. 24 | 6779–6784
substrates fructose-1,6-bisphosphate (FBP) and sedoheptulose-1,7-bisphosphate (SBP) show high structural similarity, the main difference being that SBP possesses one additional C(H2O) group compared with FBP (seven vs. six carbon atoms, respectively). As a result of this history, we have gained an understanding of the structure and regulation of FBPase (16, 17). Subsequent work has also increased our understanding of NADP-glyceraldehyde 3-phosphate dehydrogenase, phosphoribulokinase, and Rubisco activase (5). By contrast, our knowledge of SBPase is limited, primarily due to the difficulty in obtaining stable preparations of the enzyme (15, 18). The work that was accomplished demonstrated that SBPase has unique TRX-linked disulfides and is a bottleneck in the cycle, thus making it a factor in limiting plant productivity (19–21). To better understand why photosynthetic eukaryotes possess two different phosphatases, we have conducted a study of SBPase using the enzyme from a moss, *Physcomitrella patens* (*Pp*), which gave stable preparations that could be crystallized. We have characterized FBPase in parallel for comparison and found that, although the two enzymes possess overall similar 3D architecture at the subunit level, they have different evolutionary histories: FBPase is derived from bacteria in conjunction with the endosymbiotic event that gave rise to mitochondria, whereas SBPase is of archaeal origin.

Results and Discussion

Three-Dimensional Structure of the *P. patens* Phosphatases. At the outset, we sought to understand the basis for differences in the regulatory properties of the TRX-linked FBPase and SBPase enzymes. One possibility was that the regulatory differences might be explained by each enzyme having a unique structure. However, earlier modeling of the wheat enzyme (19) together with the available structure of the nonregulatory *Toxoplasma gondii* SBPase (PDB ID code 4IR8) pointed in another direction. To better understand the relationship between FBPase and SBPase, we examined their 3D structures. To this end, we purified the two enzymes using combinations of classical chromatography techniques and found that, although the two enzymes possess overall similar 3D structures, they have different evolutionary histories: FBPase is derived from bacteria in conjunction with the endosymbiotic event that gave rise to mitochondria, whereas SBPase is of archaeal origin.

![Fig. S1. Chloroplast FBPase and SBPase of *Physcomitrella patens* (Pp) in comparison with the endosymbiotic event that gave rise to mitochondria.](https://www.pnas.org/cgi/doi/10.1073/pnas.1606241113 Gütle et al.)

Fig. 1. Structural overview of *Pp*FBPase (PDB ID code 5IZ1) and *Pp*SBPase (PDB ID code 5IZ3). Regulatory cysteines are highlighted. The active sites are represented as surface areas for each monomer. (A) *Pp*FBPase. (B) *Pp*SBPase. (C) Superposition of *Pp*FBPase (green) and *Pp*SBPase (orange) monomers.
monomer. The structure for oxidized PpFBPase presently reported confirms the role of these two cysteines in disulfide formation. The distances between the sulfur atoms of the cysteine residues 224/246 and 241/246 in PpFBPase are more than 7 Å for both pairs, so that disulfide formation would require a major conformational rearrangement, as was suggested to occur between Cys153 and Cys178 in the pea C173S mutant (16). In our X-ray structures, the redox-regulatory disulfides were shown to be surface-exposed and remote from the sugar bisphosphate binding sites. Based on a crystallographic comparison with the pig kidney enzyme, it was postulated that the reduction of the disulfide of pea FBPase provoked a shift in the position of several β-strands, resulting in the reorientation of a critical glutamate side chain necessary for cofactor binding (16). At this point, the structural rearrangements leading to reductive SBPase activation are yet to be defined.

Regulation of FBPase and SBPase of *P. patens* Chloroplasts.

Assay of SBPase. The enzyme was ideally assayed by measuring P, release from SBP. However, the lack of a reliable commercial source of SBP necessitated that we use an alternate procedure for large experiments. Therefore, in those cases, we measured activity with FBP as substrate. We found that the homogenous enzyme could use FBP at 1/100th the rate observed with SBP. Therefore, unless stated otherwise, we monitored activity of SBPase with FBP.

** Thioredoxin specificity.** For optimal catalysis, FBPase and SBPase are reduced by the light-dependent ferredoxin/thioredoxin system or its nonphysiological in vitro replacement, DTT-reduced TRX. Because chloroplasts contain multiple classical TRXs (*f*, *m*, *x*, and *z*), we tested the effect of several different TRXs on the reductive activation of the enzyme. TRX *z*, as well as the atypical chloroplast TRX-like2.2, were unable to activate either phosphatase, whereas TRXs *f* and *m* were effective in the order *f* > *m* (Fig. 2A). PpFBPase was activated at all levels of TRXs *f* and *m* tested, but PpSBPase required relatively high levels of both redoxins and even then was only sluggishly activated by TRX *m*. Thus, PpFBPase activation saturated at about 2 μM TRX *f* and at 20 μM TRX *m*. The results show that, under these conditions, TRX *m* activated PpFBPase, in agreement with earlier reports (27, 28). We conclude that TRX *f* is more effective than TRX *m* in regulating the two phosphatases, as found originally (4), and that activation of SBPase by TRX *m* is marginal. TRXs *x* and *y* function in reactive oxygen species defense jointly with accessory enzymes and are not active with FBPase (6). Consequently, these proteins were not tested. The results demonstrate that the moss (bryophyte) phosphatase enzymes exhibit regulatory properties similar to the more advanced seed plant species. It has been proposed that redox regulation in its modern form appeared after the endosymbiotic event (29) and was later refined in land plants. In keeping with this idea, some years ago the NADP-dependent malate dehydrogenase (NADP-MDH) of *Chlamydomonas reinhardtii* was found to display regulatory properties intermediate between those of nonredox counterparts and the fully reductively-controlled enzyme of land plants (30).

Redox potentials. To gain further insight into the regulation of the phosphatases, we estimated the potentials of the redox-active disulfides of both enzymes following treatment with a varying amount of oxidized and reduced DTT plus a catalytic amount of TRX *f*. The resulting band pattern indicated that PpFBPase (∼310 mV) has a slightly more negative reduction potential at pH 7.0 than PpSBPase (∼290 mV) (Fig. 2B). This difference may be a reflection of the versatility of function: FBPase functions in both the Calvin–Benson cycle and starch synthesis, whereas SBPase has a role only in the former pathway.

Redox status vs. catalytic activity. We next compared the relative reduction rates coupled with a measure of catalytic activity of the phosphatases. To this end, we reduced the proteins with a range of reductant (DTT) concentrations and stopped the reaction after different incubation times to measure the extent of reduction by gel electrophoresis and enzyme activity by biochemical assays. The experiments were carried out at pH 7.0 to slow the reduction/activation process and the onset of activity. As seen in Fig. 2C and D, PpFBPase was almost completely reduced after 10–30 min, whereas PpSBPase was only partially reduced after 90 min. The rate of reduction of both phosphatases correlated with the appearance of catalytic activity, unlike earlier observations with NADP+-dependent malate dehydrogenase, where reduction was substantially faster than activation (31, 32). The absence of such a hysteretic effect with the phosphatases (4) is possibly linked to a simpler mechanism of activation. Both enzymes possess only a single disulfide per subunit, compared with NADP-MDH with two regulatory disulfides that necessitate an interconversion with an additional, internal cysteine. Our experiments thus suggest that the molecular movements required to activate the phosphatases are more restricted than for NADP-MDH. Moreover, under identical experimental
conditions, \(PpFBPase \) is reduced and activated faster than \(PpSBPase \) and is thus less tightly controlled by change in redox status in most situations. Again, these differences may reflect the need to separate fine control of starch synthesis from the Calvin-Benson cycle.

Enzyme Kinetics and Substrate Specificity.

Mg\(^{2+}\) requirement. Because Mg\(^{2+}\) is an essential cofactor for both phosphatases, we studied its requirement for the oxidized and fully reduced enzymes. Determination of the half-maximal saturation concentration \((S_{0.5}) \) of the cofactor revealed differences dependent on the redox state in both cases. Thus, oxidized \(PpFBPase \) had a relatively high Mg\(^{2+}\) requirement to reach half-maximal velocity \((S_{0.5} 8.9 \text{ mM}) \), whereas the reduced enzyme needed much less \((S_{0.5} 1.7 \text{ mM}) \). For \(PpSBPase \), we obtained similar \(S_{0.5} \) values for the oxidized and reduced enzyme forms \((4.9 \text{ and } 4.6 \text{ mM}) \), respectively. The activities observed with the oxidized forms of both phosphatases (Fig. S5) were much lower than with the reduced counterparts (ca 20% and 10% activity for \(PpFBPase \) and \(PpSBPase \), respectively). Based on the results with DTT, \(PpSBPase \) would be activated at least 8-fold and \(PpFBPase \) up to 36-fold by light under physiological conditions (ca 3–5 mM stromal Mg\(^{2+}\)) (33, 34). The results further suggest that reduced \(PpFBPase \) would respond actively to light-dependent changes in stromal Mg\(^{2+}\), whereas \(PpSBPase \) would be less responsive.

Substrate specificity. Whereas \(PpSBPase \) was catalytically active with both FBP and SBP, FBP activity was about 1% that of SBP. When using the coupled assay and FBP as a substrate, reduced \(PpSBPase \) displayed a \(K_{m} \) (FBP) value of 0.23 mM and a \(k_{cat} \) of 0.037 s\(^{-1}\) \((k_{cat}/K_{m} 161 \text{ M}^{-1} \text{s}^{-1})\), and reduced \(PpFBPase \) gave a \(K_{m} \) value of 0.165 mM and a \(k_{cat} \) of 2.66 s\(^{-1}\) \((k_{cat}/K_{m} 16,121 \text{ M}^{-1} \text{s}^{-1})\). The direct measurement of phosphate released in the reaction led to catalytic rates at least fivefold higher than those estimated in the coupled spectrophotometric assay, and hence the \(k_{cat}/K_{m} \) values were greatly underestimated. We attribute this difference to poor coupling efficiency under the assay conditions. Indeed, we observed that the kinetics of NADP\(^{+}\) reduction with both enzymes were far from linear, with a lag phase likely corresponding to the buildup of fructose 6-phosphate. Nevertheless, the coupled assay allowed a convenient means of estimating FBP \(K_{m} \) values. Using the direct determination of \(P_l \) released with the physiological SBP substrate by \(PpSBPase \) yielded the \(k_{cat} \) value of 122 s\(^{-1}\) (vs 0.037 s\(^{-1}\) with FBP), reflecting the much higher activity with the actual substrate. We failed to detect phosphate release by the \(PpFBPase \) enzyme assayed with SBP even when increasing the amount of enzyme to very high levels. We therefore compared the ligand binding sites of both enzymes in the protein structures we obtained. Based on homology modeling and docking, 15 residues are involved in FBP binding in the \(PpFBPase \) active site (Fig. S6). The comparison of \(PpFBPase \) and \(PpSBPase \) active sites shows that 12 out of 16 residues are conserved between the two enzymes, with Thr180, Tyr355, and Tyr357 of \(PpSBPase \) being replaced by Glu160, Phe311, and Asn313 in \(PpSBPase \) (Table S1). Moreover, the loop partially covering the active site between strands \(\beta 1 \) and \(\beta 2 \) is larger (eight residues) for \(PpFBPase \) than for \(PpSBPase \) (four residues) (Fig. S4). Solvent-accessible surface areas of 1,086 and 1,153 Å\(^2\) were calculated using the PDBePISA server (www.ebi.ac.uk/pdbe/prot_int/pistart.html) for the \(PpFBPase \) and \(PpSBPase \) active sites, respectively. This difference may explain why \(PpSBPase \) is much more active with the larger SBP substrate than with FBP, and why \(PpFBPase \) is active only with FBP—that is, its sugar phosphate binding site is too constricted to accommodate the larger substrate.

Phylogenetic Considerations. The Calvin–Benson cycle has a unique organization in photosynthetic eukaryotes, with the individual enzymes arising from different organisms during evolution. Certain members of the cycle (e.g., glyceraldehyde 3-phosphate dehydrogenase and phosphoribulokinase) have a cyanobacterial origin and were acquired specifically in the green lineage, whereas others appear to be derived from genes present in the last common ancestor of eukaryotes (35). The origin of FBPase and SBPase has long been under debate. Two classes of FBPase, I and II, can be distinguished by different catalytic domains (FBPase and FBPase_glpX domain, respectively) (36). Most eubacteria have a class I FBPase, with some possessing class I F/SBPase hybrids, whereas some cyanobacteria have class II-derived hybrid F/SBPases. By contrast, chloroplast and cytosolic FBPase as well as SBPase harbor class I domains based on amino acid sequence comparisons. Moreover, plants and animals possess a cytosolic FBPase clustering to the same phylogenetic clade, making a cyanobacterial origin unlikely. Jiang et al. earlier proposed that \(\alpha \)-proteobacteria are most closely related to \(SBPase \), whereas \(FBPase \) groups with another clade of class I eubacterial FBPases (37). We conducted further comprehensive gene sequence analyses confirming that the substrate-specific phosphatases are not sister to one another and showing that they have been recruited independently during eukaryotic evolution (Fig. 34; see a detailed version in Fig. S7). Considering recent evidence that most eubacteria-derived genes were acquired during endosymbiotic events in eukaryotic evolution (38) and that an ancestor of extant archaea was the host for formation of the first eukaryote (39), a novel scenario becomes more plausible: Our phylogenetic analysis suggests that cytosolic and plastid FBPases of plants are more closely related to \(\alpha \)-proteobacterial precursors and that chloroplast SBPases are closer to archaeal FBPases. Accordingly, it seems feasible that the last common ancestor of eukaryotes harbored two types of FBPases: (i) one derived from the archaeal host, later evolving to the plastid-targeted SBPase in plants, and (ii) an \(\alpha \)-proteobacterial FBPase, likely acquired during the endosymbiotic event leading to formation of the first eukaryote (Fig. 3B). The original SBPase ancestor might have been lost in

Fig. 3. Evolutionary origin of eukaryotic FBPase and SBPase. (A) Simplified version of the phylogenetic analysis performed (a detailed version is in Fig. S7). (B) Scheme illustrating the most parsimonious scenario for the acquisition and loss of FBPase and SBPase enzymes during evolution. A, SBPase; B, FBPase; C, cyanobacterial bifunctional enzyme; cp, chloroplastic; ct, cytosolic.
opisthokonts (Fig. 3B). This conclusion is supported by the finding that the SBPase gene is present in several unicellular eukaryotes that may have acquired it by secondary endosymbiosis of phototrophic eukaryotes (40). Notably, the regulatory cysteines have been either partially or completely lost from the SBPase genes, as seen, for example, in the alveolate *Tetrahymena thermophila* (Figs. S1 and S7). Irrespective of evolutionary origin, chloroplast FBPase and SBPase subsequently independently acquired the same mechanism of redox regulation under the control of ferredoxin, FTR, and TRX, although the positions of the regulatory sites both in the amino acid sequence and in the 3D structure are radically different. It remains to be seen why evolution has chosen two distinct sites on the highly structurally homologous FBPase and SBPase to implement a very similar regulatory principle. Examining a number of chloroplast redox-regulated enzymes, we have earlier made the proposal that acquisition of redox regulation responds to structural constraints inherent to each catalyst and that there cannot be a universal regulatory module fitting all regulatory enzymes (41). There are in the literature a number of studies dealing with the evolution of structures and active sites along temperature gradients (essentially comparing psychrophilic, hyperthermophilic, and mesophilic enzymes catalyzing identical reactions). In directed evolution it has been observed that the opening of larger cavities at the active site essentially correlates with modifications in the loops bordering these positions with the possible removal of bulky amino acid chains. Interestingly, in our situation, changes of that sort occur near the active and regulatory sites. Our data suggest that the FBPase–SBPase comparison is an example of natural selection achieving results similar to those reported in directed evolution for lipase and amylase in particular (42–44).

Concluding Remarks

Two differences stand out in distinguishing chloroplast SBPase and FBPase at the protein level: (i) the solvent-accessible surface areas of their active sites, and (ii) the nature and relative positioning of their redox-active regulatory disulfides. As would be expected, the active-site solvent-accessible surface area for SBPase was found in this study to be significantly larger than for FBPase, thus allowing the accommodation of the seven-carbon sugar phosphate. This size difference is reflected in the substrate specificity of the enzymes. SBPase with the larger surface area hydrolyzes both the seven-carbon substrate SBP and the smaller six-carbon FBP, although it is much less effective with the latter. By contrast, whereas highly active with FBP, FBPase with the smaller active-site surface area is inactive with SBP. It remains to be seen whether this specificity difference has physiological consequences. Interestingly, the plant mutants with decreased SBPase activity have a much stronger phenotype than the chloroplast FBPase ones (45). We suggest that in FBPase mutants, either cytosolic FBPase with the help of either a transport system or SBPase can substitute to some extent for authentic FBPase. Obviously, our results indicate that the opposite is not true, explaining the more marked phenotype linked to the SBPase mutants. More mysterious is the basis for the difference in the regulatory sites. The two redox-active cysteines have long been known to differ not only in their adjoining amino acids but also in their placement in the proteins. Initially, we thought that knowledge of the structure of the SBPase and FBPase enzymes might help explain these differences. However, this turned out not to be the case: Despite their low amino acid sequence identity, the proteins display highly similar folds at the subunit level similar to what was observed for thioredoxin and glutaredoxin. Moreover, there were no striking differences in redox potentials or in the activity parameters altered on reduction by TRX. Our evidence suggests that FBPase was derived from bacteria in conjunction with the endosymbiotic event giving rise to mitochondria, and that SBPase was derived from an archaeal gene, putatively present in the host cell. It is remarkable that enzymes derived from genes with such different histories were adapted to embrace the same mechanism of regulation by redox transitions—that is, catalytic activity under the control of light, ferredoxin, and a thiol/disulfide regulatory chain. It is becoming fascinating to understand the evolutionary changes in the enzymes that made this adaptation possible. Lessons learned here could apply to other enzymes of the Calvin–Benson cycle.

Materials and Methods

Preparation of Recombinant PfFBPase and PfSBPase. DNA from *Pf* FBPase (1sPp153_72) and PfSBPase (1sPp41_162) was amplified by PCR (primers are listed in Table S2) and cloned in pET expression vectors. The proteins were produced in *Escherichia coli* and purified by several purification steps (for details, see SI Materials and Methods).

Crystralization and Structure Determination. The crystals obtained were analyzed by X-ray diffraction, and the structure was solved by molecular replacement (see SI Materials and Methods and Table S3 for detailed information).

Enzyme Activity Assays. The TRXs used for the assays were overexpressed in *E. coli*, and the sequences were retrieved from *Pisum sativum* (TRX f) (46) and *C. reinhardtii* (TRX m) (47).

Coupled Assay for FBP Hydrolysis. The activity of the enzymes determined with FBP as substrate was measured spectrophotometrically at 340 nm in a coupled assay. The reduction of NADPH was followed at 340 nm and the slope values were calculated. The reaction mix (in 500 μL) contained 0.2 mM NADPH, 30 mM Tris HCl (pH 8.0), MgSO4 (3 mM with reduced enzymes; 16 mM with oxidized enzymes), 0.6 mM FBP, 0.1 units of glucose 6-phosphate dehydrogenase, and 0.1 units of phosphoglucone isomerase. For determining *Km* values, enzymes were incubated with 10 mM DTT and 3 μM TRX f for 1.5 h and assayed with FBP concentrations ranging between 0 and 1.5 mM. For determining Mg2+ requirement, Mg2+ concentrations ranged between 0 and 30 mM; the Hill equation was used to calculate *Spm*. In TRX specificity assays, the phosphatase enzymes were preincubated at pH 8.0 at room temperature for 30 min with 10 mM DTT and different concentrations of the indicated TRX. For determining the time-dependent extent of reduction, assays were conducted with 10 mM DTT and 3 μM TRX f. Reactions were stopped by adding 50 μL 20% (w/v) TCA.

SBPase Assay. The release of Pi was measured colorimetrically. After reduction with 10 mM DTT and 3 μM TRX f the activated enzyme was added to a 180-μL reaction mix containing 5 mM MgCl2 in 30 mM Tris HCl (pH 8.0). After an 8-min incubation at room temperature, 800 μL P i mix (2.5% sulfuric acid, 7.5 mM ammonium heptamolybdate, 100 mM FeSO4) was added and the Pi compound was not degraded. SD of Pi release did not exceed 5%. For determining Mg2+ requirement, Mg2+ concentrations ranged between 0 and 30 mM; the Hill equation was used to calculate *Spm*. In TRX specificity assays, the phosphatase enzymes were preincubated at pH 8.0 at room temperature for 30 min with 10 mM DTT and different concentrations of the indicated TRX. For determining the time-dependent extent of reduction, assays were conducted with 10 mM DTT and 3 μM TRX f. Reactions were stopped by adding 50 μL 20% (w/v) TCA.

Midpoint Redox Potential Estimation. Midpoint redox potentials were calculated from the relative concentration of reducing agent added during titration according to the Nernst equation (for details, see SI Materials and Methods).

Time Course of Reduction of Phosphatases. Assay conditions were as described for midpoint potential measurements, except that 3 μM TRX f was included to ensure complete reduction.

Phylogenetic Analysis. One portion of the sequences was selected based on the phylogenetic analysis performed by Jiang et al. (37), and the other portion was retrieved from Blast searches using the PfSBPase (Pp1s51_74) or PfFBPase (Pp1s153_72) protein sequence (48) as template with the 1KP webtool (www. onekp.com) and UniProt databank (www.uniprot.org). For alignment, Jalview (49) was used with the Muscle algorithm (default settings) and subsequently checked manually (Dataset S1). The C and N termini were trimmed manually according to the functional domains corresponding to amino acids 148–425 of PfFBPase. In total, 361 sites were used for calculation. The phylogenetic tree was built with MrBayes (version 3.1.2) software (50). The settings were adjusted to: aamodel, mixed; ngen, 1,000,000; samplefreq, 100; burn-ins, 2,500. After all generations, the SD of split frequencies was below 0.01. Numbers at branches represent posterior probabilities as inferred by MrBayes (version 3.1.2). The constructed tree was confirmed by achieving the same phylogenetic topology when using maximum-likelihood and neighbor-joining methods.
ACKNOWLEDGMENTS. This article is dedicated to Peter Schürmann whose earlier foundational work laid the foundation for the present study. We thank the staff at beemines W068A and X06DA of the Swiss Light Source for their excellent assistance during data collection, and also thank Andrey Karplus for helpful discussions. This work was supported by a grant overseen by the French National Research Agency (ANR) as part of the Investissements d’Avenir program (ANR-11-LABX-0002-01, to J.-P.L.), (Laboratoire of Excellence ARBBE, and ANR-11-LABX-0011 LABEX DYNAMO, to S.D.L.) and by the Excellence Initiative of the German State and Federal Governments (EXC294, to R.R.).

Supporting Information

Gütle et al. 10.1073/pnas.1606241113

SI Materials and Methods

Preparation of Recombinant PpFBPase and PpSBPase. *Physcomitrella patens* (Hedwig) Bruch, Schimp., & Gümbel was cultivated as described (51). For RNA isolation, TRIzol reagent (Life Technologies) was used with 100 mg fresh weight protonema tissue. SuperScript III Reverse Transcriptase (Life Technologies) was used to synthesize cDNA from 2 μg total RNA. The cDNAs encoding *P. patens* FBPase (1sPp153_72) and SBPase (1sPp41_162) were amplified by PCR (primers are shown in Table S3). The N terminus of the two enzymes was chosen by sequence comparison and extensive homology regions. After ligation into pET12a (FBPase) and pET3d (SBPase) vectors (Novagen), *E. coli* strain BL-21 was used for protein production. After a 4-h induction with 100 μM isopropyl β-D-1-thiogalactopyranoside, cells were harvested by centrifugation (5,000 × g, 10 min) and suspended in 20 mL 50 mM potassium phosphate buffer (pH 7.0) containing 1 mM EDTA. After sonication (2 min) and centrifugation (30,000 × g, 20 min, 4 °C), the non-tagged phosphatase enzymes were purified by size-exclusion chromatography (SEC) on ACA 44 columns, DEAE ion-exchange chromatography, and, if required, a second SEC step on FPLC using a Superdex 200 16/600 column (GE Healthcare). Protein samples were stored in 50 mM potassium phosphate buffer (pH 7.0) containing 1 mM EDTA. For assays with SBP, the buffer was changed to 30 mM Tris·HCl (pH 7.5) supplemented with 1 mM EDTA. To verify their oligomeric state, enzymes were subjected to gel filtration with FPLC using a Superdex 200 10/300 GL column (GE Healthcare). *Pp*FBPase consistently eluted as a dimer, whereas freshly prepared *Pp*SBPase behaved as a tetramer.

Crystallization and Structure Determination. Both proteins were crystallized by sitting-drop vapor diffusion. Protein in 0.5 μL was mixed with the same volume of reservoir solution. The best SBPase crystals grew within 3 wk at 8 °C, from a reservoir containing 50 mM potassium phosphate buffer (pH 7.0) containing 1 mM EDTA. For assays with SBP, the buffer was changed to 30 mM Tris·HCl (pH 7.5) supplemented with 1 mM EDTA. To verify their oligomeric state, enzymes were subjected to gel filtration with FPLC using a Superdex 200 10/300 GL column (GE Healthcare). *Pp*SBPase consistently eluted as a dimer, whereas freshly prepared *Pp*FBPase behaved as a tetramer.

Midpoint Redox Potential Estimation. Mixtures of oxidized and reduced DTT dissolved in Hepes buffer (pH 7.0) were used as reductant. In time course experiments, 3 μM TRXf was added to achieve complete reduction. After a 3-h incubation in defined reductant/oxidant mixtures, samples were alkylated with mPEG 2000, which binds to free sulphydryl groups and increases the mass of the monomer by ca 4,000 Da on SDS/PAGE. We used a range of −240 to −380 mV with 10-mV steps. All gels were developed at least in duplicate to provide reproducible results.
Fig. S1. (Continued)
Fig. S1. Alignment of selected FBPass and SBPass amino acid sequences with Clustal Omega (www.pnas.org/cgi/content/short/1606241113).
Fig. S2. ConSurf analysis for PpFBPase (A) and PpSBPase (B). Multiple sequence alignment was built with the alignment method MAFFT using the CS-BLAST search algorithm for homologs (ranging from 10% to 90% sequence identity) from the UniRef90 database. Residue conservation is plotted onto the surface of both enzymes and is colored according to conservation scores ranging from 1 (cyan, low conservation) to 9 (purple, high identity). The figure reveals that the active sites of both enzymes are highly conserved and that the C1–C2 and C3–C4 interfaces are well-conserved, unlike the C1–C4 and C2–C3 interfaces of PpFBPase. The information was obtained and is shown using the PyMOL output file from the ConSurf server (24).

Fig. S3. Electrostatic potential of the molecular surface of PpFBPase and PpSBPase monomers. Negatively charged residues are colored in red; positively charged areas are colored in blue; and neutral regions are indicated in white.
Fig. S4. Topology diagram of *P. patens* FBPase and comparison with SBPase. Structural elements shared between *Pp*FBPase and *Pp*SBPase are colored in black, additional elements present in *Pp*FBPase are colored in blue, and additional secondary structures present in *Pp*SBPase are colored in red. The extended loop present in *Pp*FBPase between the β1- and β2-strands is indicated.
Fig. S5. Requirement of *PpFBPase* (A) and *PpSBPase* (B) for Mg\(^{2+}\). Results are shown for both the oxidized (ox) and reduced (red) enzymes with FBP as substrate. Error bars represent standard deviation.

Fig. S6. Close-up view of both FBP and SBP surface binding sites based on homology modeling from 3D known structures. (A) Putative FBP binding site of *PpFBPase* with monomers A and B colored green and cyan, respectively. (B) Putative SBP binding site of *PpSBPase* with monomers A and B colored blue and orange, respectively. In each case, secondary structures are shown as cartoons, residues potentially involved in substrate binding are shown as sticks, and substrate molecules (FBP or SBP) are colored white and shown in a ball-and-stick representation. Both FBP and SBP molecules are stabilized through hydrogen bonds formed by ~15 residues, including Arg336 for *PpFBPase* (Arg291 for *PpSBPase*) located within the other monomer.
Fig. S7. Phylogenetic tree of FBPases and SBPases. The 48 amino acid sequences used include 4 archaeal FBPases, 3 ε-proteobacterial FBPases, 10 eukaryotic SBPases, 3 α-proteobacterial FBPases, 4 eubacterial FBPases, 3 cyanobacterial FBPases class I, 11 eukaryotic cytosolic FBPases, and 10 eukaryotic chloroplast FBPases (for details, see Materials and Methods and Dataset S1). All α-proteobacterial FBPases consistently clustered with eukaryotic FBPases, and all archaeal FBPases with plant SBPases. Considering that horizontal gene transfer is continuously happening between prokaryotes (resulting in pangenomes) and that most prokaryote-derived genes were acquired during endosymbiotic events in eukaryotic evolution (39), the phylogenetic distribution we observed indicates that plant and animal FBPases originated from an α-proteobacterial ancestor, whereas plant SBPases originated from an archaeal ancestor. The arrow depicts the loss of one regulatory cysteine in a putatively secondary heterotrophic lineage, the alveolate T. thermophila.
Table S1. Ligand comparison of PpFBPase and PpSBPase active sites

<table>
<thead>
<tr>
<th>FBP binding site</th>
<th>Equivalent residues in PpSBPase</th>
</tr>
</thead>
<tbody>
<tr>
<td>180-Thr</td>
<td>160-Glu</td>
</tr>
<tr>
<td>197-Asp</td>
<td>178-Asp</td>
</tr>
<tr>
<td>199-Leu</td>
<td>180-Leu</td>
</tr>
<tr>
<td>200-Asp</td>
<td>181-Asp</td>
</tr>
<tr>
<td>201-Gly</td>
<td>182-Gly</td>
</tr>
<tr>
<td>202-Ser</td>
<td>183-Ser</td>
</tr>
<tr>
<td>305-Asn</td>
<td>266-Asn</td>
</tr>
<tr>
<td>336-Arg</td>
<td>291-Arg</td>
</tr>
<tr>
<td>337-Tyr</td>
<td>292-Tyr</td>
</tr>
<tr>
<td>339-Gly</td>
<td>294-Gly</td>
</tr>
<tr>
<td>341-Leu</td>
<td>296-Met</td>
</tr>
<tr>
<td>355-Tyr</td>
<td>311-Phe</td>
</tr>
<tr>
<td>357-Tyr</td>
<td>313-Asn</td>
</tr>
<tr>
<td>367-Lys</td>
<td>322-Lys</td>
</tr>
<tr>
<td>369-Arg</td>
<td>324-Arg</td>
</tr>
<tr>
<td>373-Glu</td>
<td>328-Glu</td>
</tr>
</tbody>
</table>

Table S2. Primers used for cloning the cDNA of PpFBPase and PpSBPase

<table>
<thead>
<tr>
<th>Gene_ID</th>
<th>Primer sequence, 5′–3′</th>
</tr>
</thead>
<tbody>
<tr>
<td>153_72_FWD</td>
<td>CCCCCCCCCATATGCCAATTTCCGGAGCC</td>
</tr>
<tr>
<td>153_72_REV</td>
<td>CCCCCGCCATCTGAATGCTAGAAGGAGTTTCTCCAAC</td>
</tr>
<tr>
<td>41_162_FWD</td>
<td>CCCCCCCCCATGAGCCAGAGGTGCGGACAG</td>
</tr>
<tr>
<td>41_162_REV</td>
<td>CCCCCGCCATCTACAGGAGGAGGAGGAGGAGG</td>
</tr>
</tbody>
</table>

The NdeI (CATATG), BamHI (GGATCC), and NcoI (CCATGG) restrictions are underlined. Based on these sequences, FBPase is predicted to start with the sequence MAISVEP and end with LEKFLA. After the expected cleavage of the initial methionine, the subunit is predicted to contain 355 amino acids with a theoretical molecular mass of 38,528.4 Da. SBPase is predicted to start with the sequence MAELGDS and end with ELAAATV. After the expected cleavage of the initial methionine, the subunit is predicted to contain 317 amino acids with a theoretical molecular mass of 34,163.6 Da.
Dataset S1. Alignment of SBPase and FBPase class I protein sequences used to construct the phylogenetic tree in Fig. S7

<table>
<thead>
<tr>
<th>Dataset S1</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Table S3. Data collection and processing

<table>
<thead>
<tr>
<th>Data collection and refinement</th>
<th>PpFBPase</th>
<th>PpSBPase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data collection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diffraction source</td>
<td>Cu-Kα</td>
<td>SLS X06SA</td>
</tr>
<tr>
<td>Detector</td>
<td>mar345dtb</td>
<td>Dectris Pilatus 6M</td>
</tr>
<tr>
<td>Wavelength, Å</td>
<td>1.5418</td>
<td>1.0001</td>
</tr>
<tr>
<td>Unit-cell parameters, Å, °</td>
<td>a = 73.2, b = 84.47, c = 105.11, α,γ = 90, β = 104.66</td>
<td>a = 45.2, b = 70.4, c = 197.2, α,β,γ = 90</td>
</tr>
<tr>
<td>Space group</td>
<td>P2₁</td>
<td>P222₁</td>
</tr>
<tr>
<td>Resolution range, Å</td>
<td>100.00–3.00 (3.08–3.00)</td>
<td>100.0–1.30 (1.32–1.30)</td>
</tr>
<tr>
<td>Total no. of reflections</td>
<td>692,465</td>
<td>1,662,587</td>
</tr>
<tr>
<td>No. of unique reflections</td>
<td>21,663 (485)</td>
<td>155,382 (6,941)</td>
</tr>
<tr>
<td>Average multiplicity</td>
<td>3.6 (2.5)</td>
<td>10.7 (3.7)</td>
</tr>
<tr>
<td>Mean I/σ(I)</td>
<td>8.8 (1.9)</td>
<td>30.6 (0.96)</td>
</tr>
<tr>
<td>Completeness, %</td>
<td>88.5 (60.1)</td>
<td>99.3 (90.2)</td>
</tr>
<tr>
<td>Rmerge</td>
<td>0.120 (0.390)</td>
<td>0.067</td>
</tr>
<tr>
<td>Rmeas</td>
<td>0.148 (0.479)</td>
<td>0.070</td>
</tr>
<tr>
<td>Rpim</td>
<td>0.074 (0.262)</td>
<td>0.024 (0.604)</td>
</tr>
<tr>
<td>CC½</td>
<td>0.993 (0.899)</td>
<td>0.998 (0.522)</td>
</tr>
<tr>
<td>Refinement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resolution range, Å</td>
<td>100.00–3.00 (3.08–3.00)</td>
<td>98.62–1.30 (1.33–1.30)</td>
</tr>
<tr>
<td>Rwork</td>
<td>0.257</td>
<td>0.160</td>
</tr>
<tr>
<td>Rfree</td>
<td>0.315</td>
<td>0.191</td>
</tr>
<tr>
<td>No. of protein atoms</td>
<td>9,856</td>
<td>4,993</td>
</tr>
<tr>
<td>No. of waters</td>
<td>623</td>
<td>623</td>
</tr>
<tr>
<td>rmsd, bond lengths, Å</td>
<td>9,856</td>
<td>4,993</td>
</tr>
<tr>
<td>Ramachandran, favored, %</td>
<td>90.24</td>
<td>95.88</td>
</tr>
<tr>
<td>Ramachandran, allowed, %</td>
<td>6.98</td>
<td>3.95</td>
</tr>
<tr>
<td>Ramachandran, outliers, %</td>
<td>2.78</td>
<td>0.17</td>
</tr>
<tr>
<td>Average B factor, Å²</td>
<td>55.9</td>
<td>19.24</td>
</tr>
<tr>
<td>PDB ID code</td>
<td>5IZ1</td>
<td>5IZ3</td>
</tr>
</tbody>
</table>

Values in parentheses are for the highest resolution shell. Rmerge, merging R factor (59); Rmeas, precision of the individual measurements (59); Rpim, precision-indicating merging R factor (59); CC½, Pearson correlation coefficient.
GD~~~~~~~~~~~~KLTG~~~~~~~~~~~~~~~~~~~~~~~~~~~~~VTGRDQVAAAMGIY
GPRTTYVLALDKAPGTHE~~FLL~~~LDDGKWQHVKETTEIGE~GKLFSP~~GNLRATF
DNPEYKELNY~~~~~~~VGEKYLRTLTYGMPDVQNIYVEKGVFNTVNI~~~~~SPTTKT
KLRLLFEPVAGLLLIEKAGGYSSDGKVSVDLRLMVDHTTQVAYGSKKEIEIRFEETLY

>H_ciliata_YWNF_2
SLARLMVSMGFALRTIAYKVFRTA~~~~~SCG~~ATSCVNTFGDE~~QLAVDMLANNLFE
ALTHS~HFCYKACSETPEVQLDDGMGGE-----EGFCVAFDPDGLSSVDNTSFVGTIGFVW
GE~~~~~~~~~~~~~KLTG~~~~~~~~~~~~~~~~~~~~~~~~~~~~~INGRDQAASAMGIY
GPRTTYVLALDKAPGTHE~~FLL~~~MDDGKWTHVETTEIE~GKLFSP~~GNLRATF
DNPEYKELNY~~~~~~~VSEKYLRTLTYGMPDVQNIYVEKGVFNTVNI~~~~~SPTSKA
KLRLLFEPVAGLLLIEKAGGYSSDGKVSVDLRLMVDHTTQVAYGSKKEIEIRFEETLF

>Populus_trichocarpa_A9FP94
GLIRVMMGCAEALRTIAYKVFRTA~~~~~SCG~~GTACVNSFDGF~EQLAVDMLANNLFE
ALTHS~HFCYKACSETPEVQLDDGMGGE-----PVEGGFVAFDPDGLSSVDNTSFVGTIGFVW
GE~~~~~~~~~~~~~KLTG~~~~~~~~~~~~~~~~~~~~~~~~~~~~~VTGRDQVAAAMGVY
GPRTTYVLALDKAPGTHE~~FLL~~~LDDGKWQHVKETTEIGE~GKLFSP~~GNLRATF
DNPEYKELNY~~~~~~~VSEKYLRTLTYGMPDVQNIYVEKGVFNTVNI~~~~~SPTSKA
KLRLLFEPVAGLLLIEKAGGYSSDGKVSVDLRLMVDHTTQVAYGSKKEIEIRFEETLY

>Tetrahymena_thermophila_I7LSW7
SLQKIYIALLDSFIELADDLRFH~-----ACGRKEAGSQNAFIDI~--QLEDCTSDEIFPN
HLKT~GEVAYGLSEQPKVLEVGGE-----NKYIVTPDPLGLSSIGCMNWTGVTIGFVINK
ND~------------------------EKVLIG~--------------------------HTKDLIAASGCMMY
GPRTTYVNEKTQTVN~--YSLTINQKQWVEWILSNIVKPOGKLFAP~~GNLRAAS
ENPNYRQCNWW~----------------FAQGVTRLTYGMPDVQNIYFQSGIFTTIES~SKHAV
KLRLFLEVAPALHAEMAKGKSSDGKNSLMELOVTSYDQSGIIYVGETEVDKYLSTLN

>Arcobacter_butzleri_A8E5U5
--MQEIKAIESAIAKIKHLIETG~-----DTG~--KSEFENSTGDT~QLKLDIASDRED
IFKNI~PSIKAIVSEQEAIVLNLHE~~NGKYLAAYDPLDDSSLVNLSVGSIGFYIEN
NE~------------------------FNAQNIIVASYYVF
GPRPMVMTT~--TVDKMN~--YRL~-----LDGKFTFIQ~NIKLNEKGLNAP~--GSTQC
WAPFHLQDLDI~----------------FNDGVRLYRSGMPDVQLHLQLKNGLFSYPGT~--SKDPKG
KLRLFLEVFVFPAFVYKEAGGFAT~NGTY~RIELEVAHLHDSTPCFGSASEMNLKEV

>Helicobacter_hepaticus_Q7VGH7
MISIIIDSLRESALHIDSLLKDT~-----STS~--YLQINASAGMDQ~--QLEDIVRVDKFLE
KLLNL~PCVKAICSEQEMEINYMNS~KNAPYIIAYDPLDDSSLDLSDNLSITIFGYIEN
EE~------------------------LSAHLIASGYIIY
GPRLFMVVAEQ~--QALD~--YRY~------NGNMRWNLGAALANTKGINAP~--GTTQKH
WENKHMAMESL~----------------FAQGVTRLTYGMPDVQNIYFQSGIFTTIES~SKHAV
KLRLFLEVAPVFPAFVYEKEAGGFAT~NGTY~RIELEVAHLHDSTPCFGSASEMNLKEV

>Campylobacter_curvus_A7GXH6
DLNIEFETIKSVASEISKEVY~-----DLG~--YTHETANATGD~--QLKLDVQSEIDITA
KFKAAL~SCVKAALVSEDEKIILP~-----NGKFIAYDPLDDSSLVNDVAFSIFGYIE
NE~------------------------LKPQNLIAAAASYIY
GPRLFIVNDK~--KGTISPFFYRL~-----GDGKNCFVRE~LELAEQKGLNAT~--GATQKG
WSKTHRNPEIL~----------------FAQGVTRLTYGMPDVQNIYFQSGIFTTIES~SKHAV
KLRLFLEVPLFPAFVYEKAGGFAT~DGKNSDITLDFVNIKTHQTSPFCFGSASEHLKHYF

>Aeromonas_salmonicida_A4SM33
ELTSLLSSIRLAACKVNRINKAGLAD~IIG~--SMGAENQRQGEV~--QQKLDVYANERFK
ALEAREGVCIG~EEEEEEDFSPDSELRSHSKVVLIDPLDSSLVNDVAFSGTIFSIFYR
RLSA~--PGTVGTLDPL~------------------FGPNLQVAAGYVY
GSSTMLVTTGG~FGVNG~--PTY~-----DFSICFCLSHENIRIPVEEGKISINEYNK~F
PDGVKYYLKJC~QEREDTHAPSTYRISGLYSDFHRLNKG~GIYIPFSS~--TNSPNG
KLRLLYECPNMAPFVQAGKAS~DGF~--RMDIOQPTALHRPTYFGSTKMERAEAFMR

>Photobacterium_profundum_Q6LV59
DLSLLSIGLAKAVISREINKAGLVAL~ITG~--AIGENQRQGEV~--QQKLDLYANDKFK

>Photobacterium_profiles_P77C88
SLKQKALWVSMGFALRTIAYKVFRTA~---QACGRKEAGSQNAFIDI~--QLEDCTSDEIFPN
HLKT~GEVAYGLSDEQPKVLVGE~--NKYIVTPDPLDDSGIGCMNWTGVTIGFVINK
ND~------------------------HHTKDLIAASGCMMY
GPRTTYVNEKTQTVN~--YSLTINQKQWVEWILSNIVKPOGKLFAP~--GNLRAAS
ENPNYRQCNWW~----------------FAQGVTRLTYGMPDVQNIYFQSGIFTTIES~SKHAV
KLRLFLEVAPALHAEMAKGKSSDGKNSLMELOVTSYDQSGIIYVGETEVDKYLSTLN

>Aeromonas_salmonicida_A4SM33
ELTSLLSSIRLAACKVNRINKAGLAD~IIG~--SMGAENQRQGEV~--QQKLDVYANERFK
ALEAREGVCIG~EEEEEEDFSPDSELRSHSKVVLIDPLDSSLVNDVAFSGTIFSIFYR
RLSA~--PGTVGTLDPL~------------------FGPNLQVAAGYVY
GSSTMLVTTGG~FGVNG~--PTY~-----DFSICFCLSHENIRIPVEEGKISINEYNK~F
PDGVKYYLKJC~QEREDTHAPSTYRISGLYSDFHRLNKG~GIYIPFSS~--TNSPNG
KLRLLYECPNMAPFVQAGKAS~DGF~--RMDIOQPTALHRPTYFGSTKMERAEAFMR

>Photobacterium_profundum_Q6LV59
DLSLLSIGLAKAVISREINKAGLVAL~ITG~--AIGENQRQGEV~--QQKLDLYANDKFK