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Recombinantes, Facultad de Ciencias

Quı́micas, Universidad Autónoma de

San Luis Potosı́, Av. Dr. Manuel Nava 6,

SLP, 78210, México
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The moss Physcomitrella patens has a number of advantages for the production of
biopharmaceuticals, including: i) availability of standardized conditions for cultivation in
bioreactors; ii) not being part of the food chain; iii) high biosafety; iv) availability of highly
efficient transformation methods; v) a haploid, fully sequenced genome providing genetic
stability and uniform expression; vi) efficient gene targeting at the nuclear level allows for the
generation of mutants with specific post-translational modifications (e.g., glycosylation
patterns); and vii) oral formulations are a viable approach as no toxic effects are attributed to
ingestion of this moss. In the light of this panorama, this opinion paper analyzes the
possibilities of using P. patens for the production of oral vaccines and presents some specific
cases where its use may represent significant progress in the field of plant-based vaccine
development. The advantages represented by putative adjuvant effects of endogenous
secondary metabolites and producing specific glycosylation patterns are highlighted.
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After two decades of research, extensive proofs
of the concept for plant-based vaccination
have been provided, but these approaches have
also faced different maturation steps. Improv-
ing expression levels and increasing biosafety
were priorities. Expression levels have been
improved substantially through platforms
based on transplastomic technologies or transi-
ent expression mediated by viral elements [1,2].
Other relevant aspects were biosafety concerns,
especially those related to the risk of undesired
gene flow. Therefore, exploring in detail new
plant expression platforms compatible with full
containment are of special importance [3].
Although some plant species have been
assessed in bioreactor-based biomass produc-
tion, some disadvantages are identified. Dedif-
ferentiated plant cells cultured in suspensions
tend to be sensitive to shearing due to their
tough cell wall and large size, which limits
operating conditions [4]. In addition, these sus-
pension cultures require the presence of plant
growth regulators, being prone to induce
genetic instability known as somaclonal
variation [5].

Another trend in the field was changing the
concept of ‘eating transgenic fruits as vaccine’ to
the concept of using formulations obtained by
processing the plant biomass. Therefore, new
platforms would provide possibilities to expand
the alternatives for the production of vaccines at
low cost and under an environment-friendly
process.

The moss life cycle is characterized by an
alternation of two stages: a haploid gameto-
phyte and a diploid sporophyte. Gametes are
generated from the gametophyte by mitosis.
Their fusion results in diploid zygotes, which
give rise to embryos that develop into the
sporophyte. Subsequently, sporophytes can
produce spores through meiosis, which germi-
nate to produce further gametophytes [6]. Fol-
lowing spore germination, most of the moss
species develop a filamentous stage called pro-
tonema. In the case of Physcomitrella patens,
this stage can be long-lived under lab culture
and comprises only two distinct cell types,
chloronema and caulonema.

Chloronema filaments are produced right
after spore germination and possess densely
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packed cells containing large chloroplasts, while caulonema cells
emerge later from the apical cells of chloronema filaments and
present fewer spindle-shaped chloroplasts. Interestingly, proto-
plast regeneration can lead directly to the development of
chloronema filaments, making this event a convenient interven-
ing point for genetic transformation [7]. In addition, caulonema
filaments present the production of buds as side branches,
which develop into gametophores, the leafy shoots, which sub-
sequently are able to produce gametes [8,9]. In particular, Phys-
comitrella produces female and male gametes in the same plant.

Over the last years, P. patens has been developed as a model
organism for plant science [8,10,11]. Its genome has been fully
sequenced and established community resources further facili-
tate its use [12]. In addition, the production of biopharmaceuti-
cals using this organism as expression host has been explored,
and provided attractive evidences of its usefulness as a low cost
and convenient platform [13]. So far, moss has not been

exploited as a vaccine biofactory despite its several advantages.
The following sections summarize the features related to, not
only using P. patens as an expression host for immunoprotec-
tive proteins, but also as a vehicle for delivering these molecules
by the oral route, which would lead to a new trend in the field
of plant-based vaccines (FIGURE 1) [14].

Moss biotechnology tools & the molecular farming
field
Problems of social acceptance of biotechnology approaches can
certainly hamper the adoption of new technologies. In particu-
lar, the risk that has been associated with the use of plants in
the biopharmaceutical production field is significant. As unde-
sired gene flow could lead to transferring antigen-encoding
genes into food chains, it is highly desirable to have systems
that are functional and efficient under full containment. Moss
can be propagated in a simple medium of inorganic salts [15]

Spores

Protonema

Protoplast

Immunogenicity assessment Antigenicity assessment Yield evaluation

Isolation
Maintenance under mechanical stress

Propagation of clones at protonema stage

Protonema regeneration

Selection of transformants

Transformation of protoplasts

Expression vector assembly

Gene coding target antigen

Figure 1. General workflow for developing moss-based vaccination models. The general strategy for developing moss-based can-
didate vaccines comprises: (i) establishing protonemal tissue from spores, and its propagation in a bioreactor, (ii) isolating and transform-
ing protonema-derived protoplasts with a specific vector targeting the expression of the gene of interest, (iii) rescuing transformants
under selective conditions and regeneration of protonema clones, (iv) assessing antigen production and evaluating the antigenic and
immunogenic properties.
Spores and protonema pictures, courtesy of Nelly Horst.
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resulting in a very cost-effective bioprocess when compared
with mammalian cell systems.

Physcomitrella is a very fast and stably growing plant culture
that can be grown in standard stirred tank glass bioreactors
without difficulty and as fully differentiated plants in inorganic
media without any hormones, antibiotics or vitamins [16,17].

The protonema stage of gametophyte development comprises
cell filaments that extend by the serial division of their apical
cells [18] and is very convenient for biotechnology purposes, as
it can be vegetatively propagated as a genetically stable system,
where mechanical stress, rather than being a risk for tissue
integrity, is a critical parameter to maintain this filamentous
developmental stage and to prevent the development of the
more complex adult tissues in the bioreactor [19].

Moreover, the growth rate of the photoautotrophic culture is
markedly increased by aeration with CO2-enriched air and con-
tinuous illumination. Various photobioreactor configurations
have been assessed in the cultivation of moss, such as batch,
semicontinuous and continuous cultures [20–22]. Among these
systems, a stirred-tank glass bioreactor or a tubular glass bio-
reactor are functional for moss cultivation at a scale of up to
30 l. Although scale-up above that capacity is limited as the
biomass itself limits the incidence of light at moderate and
high cell density, some alternatives have been explored. For
example, operating several bioreactors in parallel has been
postulated as the easiest alternative to scaling up the process.
Currently, the most advanced systems for moss cultivation are
based on a 100-l tubular photobioreactor and a 500-l dispos-
able wave-mixed bioreactor, established by Greenovation Bio-
tech GmbH in Germany [23,24].

It is estimated that biomass production rates reported for
moss yields, which range 0.5–4 g/l, are comparable with those
reached under other emerging platforms in the biofarming field,
such as Chlamydomonas reinhardtii [25]. Therefore, we consider
that moss constitutes a potential platform for the production of
competitive biomass amounts for vaccine evaluation in preclini-
cal and clinical trials, although accumulation levels for specific
immunogen candidates will determine this to an important
degree. Performing initial experimental evaluations of this system
on vaccine production is a critical factor to determine the feasi-
bility of the platform, having expression levels and plant biomass
yield as the central parameters to be measured. Indeed, the fact
that a purification process for this approach is not needed seems
to be a major cost-saving factor and may allow for the elicitation
of immune responses, even at modest accumulation levels.

In terms of genetic engineering, the generation of stably
transformed bryophytes was first documented in 1991 for
P. patens [26] through protoplast transformation, which is still
the method of choice. This method is based on the polyethy-
lene glycol-mediated transformation of protoplasts generated
from cultures of protonema tissue, which should be properly
grown in suspension cultures to allow the successful isolation
of protoplasts and high transformation rates [19].

In contrast to other plants examined so far, nuclear-encoded
genes of P. patens can be specifically targeted and ablated by

homologous recombination, minimizing the position effects
and silencing associated with transgene copy number. Highly
efficient gene targeting in moss relies on an expression vector
design comprising, along with expression cassettes for transgene
and gene markers, the flanking regions identical to those at the
target genomic insertion point. The polyethylene glycol-
mediated transformation of protoplasts is subsequently applied
to rescue stable transformants through an antibiotic-mediated
selection process. The regenerating protonema colonies are sub-
sequently subjected to a transgene and protein expression
screening [27,28]. Interestingly, not only plant-derived expression
systems are functional in moss but also genetic elements known
from mammalian cell culture [29].

A second method used for transforming bryophytes is par-
ticle bombardment. This has been applied to P. patens [30,31]

and Marchantia polymorpha cells [32]. The principle of this
method consists of using helium-accelerated gold particles
coated with DNA which enter moss cells, thus delivering the
foreign DNA. This technique is especially suitable for transient
gene expression studies, but it can be also used to obtain
stable transformants.

Based on early reports that describe the attachment of Agro-
bacterium to moss (Phylaisiella selwynii) cell walls [33,34], it is
now increasingly clear that P. patens [35] as well as the liverwort
M. polymorpha [36] can be transformed by Agrobacterium-medi-
ated gene transfer.

This set of methods reflects the feasibility of generating
genetically engineered moss clones [27,37]. It should also be men-
tioned that availability of efficient transformation protocols
limits the exploitation of some plant species in the molecular
farming field. In particular, routine efficient plastid transforma-
tion protocols are basically available for tobacco [38]. It is there-
fore encouraging to have a set of efficient genetic engineering
tools for the species P. patens. Also, it is important to note that
moss promoters have been isolated and used for the production
of recombinant proteins in Physcomitrella [39,40]. These regula-
tory sequences can be exploited in the optimized expression of
heterologous proteins.

Physcomitrella has been used as a bioreactor for the produc-
tion of complex biopharmaceuticals and proved suitable for
low cost and high volume production of recombinant proteins
(TABLE 1). This system has the capability of extensively processing
proteins at the posttranslational level, including the formation
of disulfide bridges and complex glycosylation, as described in
a further section. As no vaccines have been produced in moss,
a representative example of a biopharmaceutical produced in
moss is described in the following lines. The case of the human
factor H (FH) illustrates the potential of P. patens as a conven-
ient biopharmaceutical production platform. Complement FH
is an important regulator of a key component of the innate
immune response. Thus, FH deficiency or defects are associated
with several diseases, identifying this protein as a target for bio-
pharmaceutical production. However, FH has a complex struc-
ture requiring the correct formation of 40 disulfide bridges. In
a report made by Buettner-Mainik et al. in 2011 [41], moss
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lines that stably express recombinant FH (rFH) were gen-
erated by means of co-transfection of the vector carrying
the gene of interest and a gene coding for an appropriate
marker gene. Efficient secretion of the rFH into the cul-
ture supernatant was successfully induced by the inclu-
sion of an endogenous signal peptide, P. patens aspartic
protease 1 [42]. Secretion into the medium represents a
substantial advantage, as downstream processing is greatly
simplified. Immobilized-metal affinity chromatography
was successfully applied as a purification strategy based
on the inclusion of a C-terminal 6xHis-tag. Based on
mRNA levels, four expression lines were selected from
the 43 lines showing stable integration of the transgene.
Importantly, the moss-produced rFH was correctly proc-
essed as it showed a biological activity comparable with
that of plasma-derived human factor. In terms of yields,
cultivation during 1 week in a 5 l photobioreactor
resulted in about 25.8 mg/g dry weight, which is compa-
rable with those levels reached when biopharmaceuticals
are expressed via nuclear expression in conventional
plant-based systems [43]. Importantly, no changes in
growth rate and development of the production strains
were observed when compared with wild-type P. patens.
This case illustrates appropriately the advantages and the
general strategies involved in using moss for the produc-
tion of biopharmaceuticals. It is then considered that vac-
cines may follow this general procedure even if the
immunogen is a complex and glycosylated protein.

Glycoengineering & immunological implications
It is well known that glycosylation patterns can alter the
immunogenic properties of biopharmaceuticals, such as
antibodies and vaccines [44–46]. Of particular interest is
the fact that asparagine (Asn/N)-linked protein glycosyla-
tion in plants shares a common core structure with mam-
malian N-glycosylation, that is, di-antennary glycans of
the complex type. Main differences consist in the lack of
terminal b-1,4-galactose and sialic acid residues in plants,
while present in mammals. By contrast, in plants
complex-type N-glycans are modified by the enzymes
b1,2-xylosyltransferase and a1,3-fucosyltransferase that
are not present in mammals [47–50].

Modification of glycosylation processes in a specific
host can be achieved through a set of molecular
approaches, where deleting glycosyltransferases responsible
for certain modifications has been the first-hand
approach [51–53], although RNAi has also been used to
decrease the amount of the target glycosyltransferases
[54–56]. In addition, heterologous expression of the desired
glycosylstransferases that are absent in the host constitute
another important tool in this field [57–59].

Using these kinds of molecular strategies, both benefi-
cial and adverse effects can be attributed to plant-specific
glycosylation patterns. The effect of glycosylation on the
immunogenic properties of biopharmaceuticals has beenT
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mainly studied in higher plants. As no vaccines have been pro-
duced in moss so far, higher plants are considered the closer
system that may serve as example on how glycosylation is an
important aspect on vaccine production. Jin et al. [44] have
reported that glycosylation in plants seems to confer enhanced
immunogenicity of plant-specific N-glycans on a human mono-
clonal antibody (2G12) against HIV, compared with that pro-
duced in glycoengineered plant lines with the absence of
b1,2-xylose and a1,3-fucose. Passive immunization of rabbits
with the protein carrying these residues resulted in a humoral
immune response to both types of N-glycan structures. Also,
immunoblotting studies with sera from allergic patients showed
binding to these monoclonal antibodies decorated with
a1,3-fucose. One of the mechanisms that could be responsible
for this effect is an increased lectin-mediated antigen uptake by
the antigen-presenting cells, such as dendritic cells. It is well
known that C-type lectin receptors usually recognize carbohy-
drates from self or non-self origin and internalize glycosylated
antigens for further antigen presentation by MHC class II mol-
ecules. Some undesired effects are also a possibility as these
fucose and xylose residues can mediate the development of
allergies through the binding of anti-IgE, especially when con-
sidering the correlation between IgE levels responsible for
immunoreactivity to carbohydrate compounds and allergic
disorders [60,61].

Recently, therapeutic antibodies have become an interesting
subject due to the high demand for the treatment of different
types of diseases. Monoclonal antibodies produced in different
plant systems [62,63] have exhibited reduced in vivo efficacy com-
pared with their in vitro activity. Endogenous IgG competes
with therapeutic antibodies preventing antibody-dependent cel-
lular cytotoxicity in effector cells. Modification of glycosylation
processes has shown to increase antibody-dependent cellular
cytotoxicity activity [64] of fucose-deficient antibodies produced
in P. patens. Moreover, the activity of these therapeutic IgGs is
not impaired by normal human serum.

It is clear that these kind of posttranslational modifications
are responsible for complex and diverse effects and therefore
should be evaluated case by case in order to determine if inter-
ventions are required according to this particular goal.

In this context it deserves special consideration that some
mosses offer a singular flexibility for achieving interventions on
glycosylation as deleting specific glycosyltransferases or confer-
ring the ability of expressing heterologous ones can lead to
directed glycoengineering approaches. P. patens and Ceratadon
purpureus are able to integrate foreign DNA in a site-directed
manner, as homologous recombination occurs at high frequen-
cies in the nuclear genome. This advantage is unique in mosses
and P. patens in particular exhibits a higher frequency of gene
targeting compared with C. purpureus [65]. This feature makes
this moss a robust platform for functional genomics but also
for developing strains with improved biosynthetic traits in
terms of the production of heterologous proteins [66,67]. For
example, double-knockout variants for b1,2-xylosyl-transferase
and a1,3-fucosyl-transferase genes have been generated, in

order to ‘humanize’ and optimize N-linked oligosaccharide
structures [51]. The purpose of this humanization is to yield a
heterologous protein lacking the potentially immune reactive
a1,3-fucose and b1,2-xylose residues [59,64,68]. As shown
in TABLE 1, a number of biopharmaceuticals have been produced
successfully in moss knockouts to accomplish specific glycosyla-
tion patterns.

On the other hand, having specific glycosylation is especially
desirable in those cases when vaccine targets are highly glycosy-
lated proteins, in which this trait has a relevant role in immu-
nogenicity. This is the case for some viral proteins, specifically
those of enveloped viruses, such as HIV and influenza virus. In
particular, gp120 from HIV is considered a crucial target in
vaccine development as it contains well-characterized neutraliz-
ing epitopes, which elicit antibodies able to mediate the block-
ade of viral entrance. Interestingly, potential gp120 epitopes
have shown differential immunogenic properties when changes
on glycosylation patterns are induced. Half of the
gp120 molecular mass is contributed by N-glycans that may be
potential epitopes shielding an immune recognition, contribu-
ting to antibody reactivity to evasion from host immune
responses [45,69–72]. Recent studies have evaluated the efficacy of
‘deglycosylation’ [45]. Some glycans from Env were devoided to
allow a protective immune response against infection in maca-
que models. However, this resulted in a reduced vaccine effi-
cacy and reduced immune responses, compared with wild-type
Env immunized animals. By contrast, it was recently reported
that the removal of an N-linked glycan enhanced in vitro anti-
genicity of some neutralizing epitopes in the V3 loop [73]. In
addition, the conserved glycan N448 was identified, whose dis-
ruption induced changes in the structure of the C4 region of
gp120, making this specific region more resistant to proteolytic
processing [74]. It has also been demonstrated that the differen-
ces in glycan composition of gp120 produced by different host
cells can affect recognition of Env [70]. Some site-specific degly-
cosylations have resulted in an enhancement of the elicitation
of neutralizing humoral responses [75,76].

Since specific glycosylation patterns have been associated
with differential immunogenic properties, it is of relevance hav-
ing moss as a host that can be engineered to generate the
desired glycosylation pattern. This is a tool that would allow
the investigation of glycosylation structural and conformational
features that may lead to novel HIV vaccine design approaches,
and also to elucidate the impact of differential glycosylation on
the quality of the immune response to HIV. Therefore, the
development of HIV vaccines may be positively impacted by
the use of immunogens with engineered glycans able to evoke
broader effector immune responses. Since only a few pathogens
are being analyzed from this point of view, it is considered a
field of opportunity with a particular potential for the vaccine
development area.

Expert commentary
The use of moss biomass for the production and delivery of
vaccines remains unexplored. However, as plant cells have been
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used over the past two decades as oral delivery vehicles for anti-
genic proteins, having as a result interesting perspectives for the
vaccinology field, it is reasonable to expect the same application
for moss. In higher plants, several antigens have been properly
expressed yielding functional immunogenic proteins [77–79].
This immunization strategy has also been associated with
increased immunogenicity when compared with that consisting
of administering the pure recombinant protein alone [80–82].
This aspect is interesting and should be explored in more
detail. It could be related to the delay of antigen degradation
when it is accompanied by several complex molecules such as
polysaccharides; the differential glycosylation of the target pro-
tein to those produced in bacteria; the presence of plant secon-
dary metabolites with adjuvant activity, among other possible
factors [83].

Interestingly, despite containing high amounts of phenolics,
several bryophytes are edible and considered safe for oral con-
sumption as they serve as supplements in food production. For
example, Sphagnum sp. has been used as an ingredient in
bread, as tea, as a flavoring agent for Scotch whisky and also as
an animal feedstock component [84]. This species has been
found to serve as a feed source for lepidopterans, showing simi-
lar digestibility as that of lettuce. Importantly, in a very pre-
liminary assessment, P. patens has been consumed as a drink
component with no apparent adverse effects in humans,
although it has not yet been assigned to the category of Gener-
ally Recognized as Safe oral communication. It is expected that
further studies will provide in detail data on the safety for the
ingestion of moss biomass. Therefore, although P. patens has
not been explored as a vehicle for oral delivery of biopharma-
ceuticals, it is considered that the development of moss-based
oral vaccines is a potential field of opportunity. In spite of the
limited knowledge on the safety of moss intake, a particular
field where oral administration of moss biomass might have a
straightforward influence is in the veterinary field as the regula-
tory system is less strict than those for use in humans [85].

As the failure of various vaccines are attributed to their
inability to trigger a robust immune response able to protect
when exposure to an infectious agent takes place, the use of
adjuvants is necessary to achieve protective immunity. Despite
major advances in vaccinology, the formulations basically still
depend on aluminum salts as adjuvants. The secondary effects
associated with these compounds as well as the necessity to
direct the immune responses in a more precise manner raises
the need for new adjuvants.

A number of plant extracts or fractions have significant if
not strong immunomodulatory properties, such as inducing
increase in cytokine production, enhancing the activation of
CD4 and CD8 T cells or enhancing the activity of NK
cells [86–88]. These plant metabolites can be administered along
with the vaccine to elicit stronger immune response [89]. Plant-
derived adjuvants are gaining attention as potential vaccine
components. Recently, increased attention has been paid to the
use of plant secondary metabolites as possible adjuvants in vac-
cine formulations. This trend is based on the fact that a

number of secondary metabolites have shown adjuvant proper-
ties when co-administered in vaccine formulations [90–94].

Interestingly, P. patens produces a diverse set of secondary
metabolites, including typical animal, algal and mushroom
metabolites [95]. Although not widely discovered and character-
ized, among the metabolites produced by moss, one may iden-
tify interesting cases, such as the fact that moss produces
important levels of eicosapentaenoic acid. This polyunsaturated
fatty acid can affect inflammation and metabolism in humans,
providing benefits in immunologic and metabolic disorders.
These effects are believed to be mediated by modifying the pro-
duction of inflammatory mediators and the suppression of
inflammatory leukocytes [96].

As another example, polyphenols are known to exert immu-
nomodulatory effects [97], and it is of interest to note that these
kinds of compounds are present in P. patens and enzymes
related to their metabolism are under characterization [98].

Therefore, the hypothesis of expecting immunomodulatory
effects by the moss metabolites is of particular relevance and
identifies in moss a particular potential of serving not only as a
delivery vehicle but also as a source of adjuvant compounds
that may enhance vaccine efficacy. We therefore propose that
these compounds could have a potential adjuvant effect when
co-administered with vaccines.

Five-year view
As the moss P. patens would represent an advantageous plat-
form for both production and delivery of oral vaccines, it opens
interesting perspectives for the field of plant-based vaccine
development. These perspectives comprise: studying in detail
the convenience of moss oral administration in terms of safety
and efficacy as an oral delivery vehicle, exploring the adjuvant
effect of the metabolites produced by this host, taking advant-
age of the low cost and environmentally friendly processes for
moss propagation in order to facilitate approval by the regula-
tory agencies and exploring the production of antigens requir-
ing specific glycosylation which can be produced easily by
means of moss glycoengineering. Therefore, experimental
approaches to evaluate these aspects would positively impact
the development of advanced platforms for low-cost vaccine
production in the following years. Vaccines where glycosylation
is relevant for immunogen potency are priority targets for
exploration. As no moss-derived vaccine has been produced yet,
these interesting and unexplored aspects would constitute a rel-
evant perspective for the field in the next years. We expect this
trend to be of significant interest to vaccinologists and may
lead to a next generation of plant-based vaccines.
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Key issues

. The moss Physcomitrella patens is an advantageous system for the production of biopharmaceuticals in terms of biosafety, genetic

stability and versatility of genetic engineering.

. Oral vaccines produced in moss may represent a novel and convenient system for the formulation of low cost and orally

administered vaccines.

. Future research should focus on: studying the putative adjuvant effects of the secondary metabolites produced by this host and the

development of glycoengineered strains for the production of optimized vaccines.
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