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Phenotype and cytokinin bioassays
The d|ipt1 plants expressed a morphological phenotype 
at the level of  protonema. Mutant chloronema and cau-
lonema cells were smaller compared with the wild type 
and showed a higher degree of  branching (Fig.  4a, b). 
Compared with the wild type, d|ipt1 colonies revealed a 
reduced diameter (Fig. 4e, f). d|ipt1 mutant lines were not 
affected in bud formation; that is, mutant cultures grown 
on solid, as well as in liquid medium still formed buds at 
approximately the same time point and with frequencies 
comparable with the wild type (Fig. 4c, d). Gametophore 
development of  the d|ipt1 mutant strains was also not sig-
nificantly altered (Fig. 4f).

In order to check whether the phenotype observed for 
d|ipt1 mutant protonema could be reversed by externally 
applied Cks, mutants were treated with different concentra-
tions of iP and BA (20–500 nM). During 2 weeks of micro-
scopic observation, the phenotype of reduced colony growth 
persisted and budding was induced on the mutant protonema 
to the same extent as on the wild type (Supplementary Fig. 
S4 at JXB online).

Levels of cytokinins in d|ipt1 mutants

In order to assess the impact of the deletion of ipt1 on lev-
els of free and tRNA-bound Cks, they were quantified in 
media and tissue of liquid cultures after 22 d of cultivation 
by UPLC-MS/MS.

tRNA-bound cytokinins
Assuming that in Physcomitrella tRNA is a major source 
of  Cks, the amount of  Ck ribosides in dephosphorylated 
tRNA hydrolysates was determined. cZR had already been 
reported as the dominant Ck type in tRNA of the wild type 
(Yevdakova et  al., 2008), correlating well with the domi-
nance of  free cZ-type Cks in tissue. tRNA extracts of  d|ipt1 
mutants revealed strongly reduced contents of  all analysed 
Ck ribosides (Fig.  5a). tZR and DHZR dropped to levels 
below the limit of  detection. The more abundant cZR and 
iPR were reduced to <1% compared with the wild type, thus 

revealing the essential importance of  IPT1 for tRNA A37 
prenylation.

Free cytokinins in tissue
In order to uncover the contribution of  tRNA-bound Cks to 
the overall Ck production in Physcomitrella, free Cks were 
determined in tissues of  the wild type and d|ipt1 mutants. 
As the methanolic extraction and the applied purification 
and quantification protocol are specific for low molecular 
weight Cks, interference by tRNA-bound Cks is unlikely. 
UPLC-MS/MS analysis revealed that levels of  cZ-type Cks 
were reduced from 537 pmol g–1 dry weight (DW) in the wild 
type to 132 pmol g–1 DW in d|ipt1 mutants. Furthermore, 
levels of  the less abundant DHZ-type Cks (15 pmol g–1 DW 
in the wild type) are reduced to only 5 pmol g–1 DW in d|ipt1 
plants.

Surprisingly, a different situation was monitored for the 
levels of iP- and tZ-type Cks. In contrast to cZ- and DHZ-
type Cks, the levels of free iP- and tZ-type Cks were strongly 
increased in the tissues of d|ipt1 plants (Fig. 5b). For exam-
ple, iPR5′MP, which at 56 pmol g–1 DW was already the 
most abundant iP metabolite in the wild type, was increased 

Fig. 4.  Phenotype of d|ipt1 plants (b, d, f, h) in comparison with the wild 
type (a, c, e, g). (a–d) liquid cultures, 19 d old. (a, b) Protonema (scale 
bar=100 μm); (c, d) developing buds (scale bar=20 μm). (e–h) Development 
on agar plates (scale bar=2 mm, 28 d old); (g, h) treated with 100 nM iP.

Fig. 3.  Subcellular localization of IPT1. Physcomitrella protoplasts 
transfected with (a) empty GFP vector and (b) vector encoding IPT1::GFP 
as a C-terminal fusion product. CLSM imaging was performed 5 d after 
transfection. Left, GFP signal; middle, chloroplast autofluorescence; right, 
merged display. Scale bars=10 μm.
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~4-fold to levels up to 233 pmol g–1 DW in d|ipt1 mutants 
(Supplementary Table S2 at JXB online).

Extracellular cytokinins
Previously, the iP-type Cks were found to be highly abun-
dant in the culture media of  Physcomitrella (Reutter et al., 
1998; Schulz et al., 2001; von Schwartzenberg et al., 2007). 
In the d|ipt1 plants, the levels of  extracellular iP and 
iPR5′MP were determined to be at least 15-fold higher 
than in the wild type. In the mutants, the concentration of 
iPR5′MP in the medium during 22 d of  cultivation accu-
mulated to a concentration of  3697 pM compared with 
242 pM in the wild type (Supplementary Table S3 at JXB 
online).

In summary, the results of Ck analyses clearly demon-
strated that the knockout of ipt1 does not result in a general 

decrease of all Cks, but leads to a drastic differential altera-
tion of the levels of the different Ck types.

Discussion

Apart from its general utility as a plant evo-devo model 
(Lang et al., 2008; Prigge and Bezanilla, 2010), two striking 
aspects are of particular interest in studying Ck biosynthesis 
in the early divergent land plant P. patens: (i) it is the most 
basal member of the green lineage with a sequenced genome 
that encodes major elements of Ck biosynthesis, metabo-
lism, degradation, and signalling (Rensing et  al., 2008; Pils 
and Heyl, 2009); and (ii) the moss genes encoding the first 
step in Ck biosynthesis exclusively represent homologues to 
tRNA-IPTs, a type of IPTs that in flowering plants is consid-
ered to be only of minor importance to biosynthesis of active 
free Cks (Miyawaki et al., 2006). The origin of these proteins 
and especially the function of IPT1 are the key points of 
this study.

Physcomitrella has a unique position in the IPT 
phylogeny

Given the topology of the tree and the taxonomic distribu-
tion generated here (Fig.  2), it can be concluded that the 
origin of the IPT gene family lies within the ancestor of 
extant bacteria. Although the longest internal branch leads 
to AMP-IPTs, this clade is unlikely to represent the ancestral 
form of IPTs, because the AMP-IPT clade is formed entirely 
by proteins from either slime moulds or cyanobacterial and 
proteobacterial plant symbionts or pathogens (red clade in 
Fig. 2). These bacterial genes, encoded by symbiosis or path-
ogenicity islands (PAIs) within the main genome or plasmids, 
being important for host interactions, are known to have been 
transferred laterally across taxa and consequently have devi-
ating evolutionary rates (Boyd et al., 2009). This holds true 
also for the putative cyanobacterial adenylate-IPTs as they 
are found only in species that are also observed as symbionts 
of specific fungi, liverworts, hornworts, ferns, gymnosperms, 
and angiosperms (Yamada et al., 2012, and references within). 
Lastly, the Dictyostelium adenlyate-IPT has been identified as 
a xenologue which was probably acquired by lateral trans-
fer from bacteria (Eichinger et al., 2005), which is consistent 
with its position in the tree generated here. The true origin 
of bacterial AMP-IPT genes is speculative and could either 
be xenologous or date back to a duplication event in the first 
bacterial lineage that chose plants as hosts and was subse-
quently transferred horizontally as part of PAIs.

Consequently, the origin of IPTs lies within bacterial 
tRNA-IPTs. Based on the tree topology and the taxonomic 
composition of the two plant tRNA-IPT clades (Fig.  2 
class I and II) following the outgroup of AMP-IPTs, the root 
of eukaryotic IPTs most probably traces back to ancestral 
α-proteobacteria and to the initial endosymbiotic event lead-
ing to extant mitochondria.

Subsequently, this ancestral mitochondrial protein acquired 
additional domains enabling its function to be extended to 

Fig. 5.  Average levels of isoprenoid cytokinins in 22-day-old liquid cultures 
determined by UPLC-MS/MS. (a) tRNA-bound Cks; two independent 
liquid cultures were harvested and analysed. (b) Free Cks in tissue; three 
independent liquid cultures were harvested and analysed. The results are 
presented as mean values with SDs. ND, not detectable. Data for each 
individual Ck are available in Supplementary Tables S2 and S4 at JXB 
online. (This figure is available in colour at JXB online.)
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the cytoplasm. While Metazoa and Fungi have kept a single 
copy, Plantae, namely the lineage formed by the second endo-
symbiotic event, either transferred the cyanobacterial copy to 
the nuclear genome or duplicated the mitochondrial tRNA-
IPT. The topology of the tree favours the latter scenario. The 
ancestral eukaryotic IPT was duplicated and resulted in two 
classes of tRNA-IPT (class  I  and II). While prasinophyte 
algae [here: Micromonas (Micp) and Ostreococcus (Ostlu 
and Ostta)] as well as seed plants (as exemplified by the well 
characterized Arabidopsis, rice, and maize IPTs) retained 
both classes of tRNA-IPTs, the distinct lineages leading to 
the studied Stramenopiles, the red alga, chlorophyte algae, 
the bryopyhte, and the lycophyte, retained only class I IPTs. 
After an additional duplication event possibly dating back to 
the LCA of flowering plants, one additional copy of class II 
tRNA-IPTs subsequently lost the capability to bind tRNAs 
and diversified into the extant ADP/ATP-IPTs found in flow-
ering plants (green clade in Fig. 2).

As previously reported (Sakakibara, 2006; Frebort et al., 
2011), the seven Physcomitrella IPTs cluster within the 
clade of class I tRNA-IPTs. All other species covered in this 
class code for a single copy tRNA-IPT, which underlines the 
remarkable evolutionary position of Physcomitrella (and 
probably other mosses) regarding IPTs.

Evidence for a plastidic origin of tRNA-bound Cks

The localization of IPT1::GFP (Fig. 3) corroborated previ-
ous sequence-based predictions which also suggested plas-
tidic targeting of IPT1 (Yevdakova and von Schwartzenberg, 
2007). Nevertheless, the uneven distribution of the plastidic 
fluorescence signal could also point to a specific suborganel-
lar localization of the IPT1 protein in the stroma, for exam-
ple in close proximity to the plastid ribosomes (Newell et al., 
2012).

Although the obtained merged pictures and 3D recon-
structions of CLSM stacks favour the assumption that IPT1 
is present in the stroma of chloroplasts (Supplementary Fig. 
S2 at JXB online), it is not possible at present state to resolve 
its exact subplastidic localization. The observed aggregation 
of IPT1::GFP protein could also be interpreted as an overex-
pression artefact of the maize ubiquitin promoter resulting 
in an excess of GFP fusion protein which might have precipi-
tated unevenly in the chloroplast.

IPT1 localized to the chloroplast taken together with 
IPT1 as the exclusive mechanism of tRNA prenylation does 
not explain how the tRNA pools in the mitochondria and 
cytosol are prenylated. The present data do not rule out a 
function for IPT1 in the cytosol and mitochondria, although 
no GFP signal was detectable in these compartments. An 
inaccurate folding of the fusion protein, for example, could 
have masked targeting sites. For the tRNA-IPT MOD5 from 
Saccharomyces cerevisiae, it has been shown that according to 
different translational starts, the protein is either transported 
into mitochondria or stays in the cytosol (Gillman et  al., 
1991). Further, it has been shown for AtIPT3 in Arabidopsis 
that farnesylation can also determine targeting to different 
subcellular compartments (Galichet et al., 2008). Due to the 

scarce knowledge of tRNA trafficking in plant cells, it can 
only be speculated on as to whether A37 modified tRNAs 
can be translocated from the chloroplast to other cellular 
compartments.

Under the assumption that the targeting of IPT1::GFP 
was not biased by artefacts, the present results point to the 
chloroplast providing a large amount of Physcomitrella pre-
nylated tRNA. This is a contrast to AtIPT2, a tRNA-IPT 
from Arabidopsis, which has been shown to be localized in 
the cytosol where it is considered to be a significant source 
of cZ-type Cks using DMAPP from the mevalonate pathway 
as a side chain donor (Kasahara et al., 2004). For the other 
tRNA-IPT of Arabidopsis, AtIPT9, to which PpIPT1 is an 
orthologue, no information on localization is available.

IPT1 is the main enzyme catalysing tRNA prenylation

The deletion of ipt1 as one of seven ipt genes had a severe 
effect on the prenylation of A37 in tRNA. The amount of 
tRNA-bound cZR, iPR, tZR, and DHZR in the d|ipt1 
mutants was strongly reduced (Fig. 5) and thus the contribu-
tion of the remaining six IPTs to tRNA prenylation can be 
considered as insignificant in moss protonema. It is therefore 
concluded that plastidic IPT1 is almost solely responsible for 
this A37 modification in Physcomitrella tRNA. The obtained 
results are comparable with the report of Dihanich et  al. 
(1987) who found in yeast that the deletion of the single copy 
tRNA-IPT gene Mod5 led to residual levels of <1.5% tRNA-
bound iPR compared with the wild type.

If  the tRNA pathway was the only pathway for Ck bio-
synthesis, as suggested by the apparent absence of adenylate-
IPTs, a Ck-deficient tRNA as obtained after IPT1 knockout 
would have led to an overall Ck-deficient plant. These plants 
should express strongly impaired bud formation as shown for 
Ck deficiency after overexpression of cytokinin oxidase (von 
Schwartzenberg et al., 2007).

Indeed the IPT1 knockout plants showed a strong phe-
notype which was mainly characterized by altered colony 
growth, cell shape, and branching of protonema (Fig. 4a, b). 
This phenotype could not be reversed by addition of exog-
enous Cks (Fig.  4; Supplementary Fig. S4 at JXB online). 
However, the bud formation as a sensitive marker of Ck 
response in Physcomitrella was neither delayed nor reduced in 
comparison with the wild type. The reduced growth in colony 
area of the mutants with its concomitantly enhanced differ-
entiation (Fig. 4e, f) can be mimicked in wild-type agar cul-
tures by exogenous application of iP (Fig. 4g, h) (Thelander 
et al., 2005; Richter et al., 2012). This morphological feature 
of d|ipt1 mutants indicates an overproduction rather than the 
expected limitation in biosynthesis of bud-inducing Cks.

Profiling of free Cks indicates a tRNA-independent Ck 
biosynthesis

A fully satisfactory explanation of the d|ipt1 phenotype is 
only possible after a detailed analysis of the profile of free 
Cks in the mutant and wild type, which uncovered a differ-
ential situation with respect to individual Ck types. While 
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the levels of tRNA-bound Cks (cZR, iPR, tZR, and DHZR) 
were strongly reduced, the level of the free Cks revealed a sig-
nificant reduction only for cZ- and DHZ-type Cks to about a 
quarter of the respective amount in the wild type. Since IPT1 
is localized in chloroplasts, it can be deduced that the major-
ity of free cZ- and DHZ-type Cks is of plastidic tRNA origin.

In contrast to the reduction of free cZ- and DHZ-type Cks, 
surprisingly a 4-fold increase for the iP- and tZ-type Cks was 
found. The fact that there is no overall loss of free Cks in the 
mutants but an increase of tZ and iP conjugates coupled to 
an almost total loss of tRNA-bound Cks, is strong evidence 
for a an unexpected tRNA-independent pathway for Ck bio-
synthesis in Physcomitrella.

This finding is in obvious disagreement with the predicted 
ipt gene complement, which seems to be comprised exclusively 
of homologues of tRNA-IPTs. Thus, the biosynthetic origin 
of tZ- and iP-type Cks needs to be re-assessed as tRNA is 
very unlikely to be their only source.

In Arabidopsis it was described that different pathways 
are responsible for the formation of distinct types of Cks. 
The tRNA-IPT-deficient double mutants of Atipt2,9 were 
shown, like the d|ipt1 mutant, to contain no Cks in their 
tRNA fraction (Miyawaki et al., 2006). However, in contrast 
to the Physcomitrella mutants, with 25% residual free cZ-
type Cks, the AtIPT2,9-deficient plants did not produce any 
cZ-type Cks.

In contrast to Arabidopsis where tZ- and iP-type Cks are 
dominant, the cZ type are the most abundant cytokinins in 
Physcomitrella. Despite this difference in the Ck profiles, 
in both plants iP and tZ represent the physiologically most 
active forms (Sakakibara, 2006; von Schwartzenberg et  al., 
2007).

Physcomitrella and Arabidopsis differ greatly in the levels 
of  free iP- and tZ-type Cks in the absence of  one (PpIPT1) 
or two tRNA-IPTs (AtIPT2 and -9). While in Arabidopsis 
the level of  free iP- and tZ-type Cks is not greatly affected 
in the tRNA-IPT double mutants, the d|ipt1 mutants show 
a vastly increased level of  those Cks, thus hinting at dif-
ferences in Ck biosynthesis, and its regulation, between 
the bryophyte Physcomitrella and flowering plants. In 
Physcomitrella, the deficiency of  IPT1 apparently causes 
an up-regulation of  the tRNA-independent formation of 
iP and tZ.

The knockout of ipt1 seems to interfere mainly with the bio-
synthesis but not with the interconversion between different 
conjugates of free Cks, thus leading to either generally increased 
or reduced overall concentrations of the different Ck types 
(Fig. 5b; Supplementary Table S2 at JXB online). The relative 
distribution of the different Ck forms within one type (e.g. the 
ratio of bases to ribosides or nucleotides) is only slightly affected 
(Supplementary Fig. S5, Table S2 available at JXB online).

Concerning the profile of free Cks, the deletion of IPT1 
leads to a shift from cZ-type dominance in the wild type 
to an iP-type dominance of free cytokinins in d|ipt1 tissue 
(Fig. 5b). These strong changes in the internal Ck profile also 
affect the concentration of Cks in the culture medium, with 
the concentration of iP-type Cks being greatly enhanced in 
the mutants.

The increase of iP-type Cks in the culture medium is likely to 
explain certain aspects of the phenotype of d|ipt1 plants. Both 
a reduction in colony growth area and an increased differen-
tiation might be a direct consequence of the increased external 
levels of iP and iPR, mirrored by the growth habitus of wild-
type plants grown on iP-containing media. The fact that the 
frequency of bud induction is comparable in the mutant and 
wild type (Fig. 2; Supplementary Fig. S4b at JXB online) shows 
that the d|ipt1 plants are probably not affected in Ck signalling.

The results of the analyses of d|ipt1 mutants suggest that in 
Physcomitrella tRNA-bound cZR is most probably the main 
source for free cZ-type Cks. Considering the loss of tRNA-
bound Cks and the concomitant existence of substantial 
amounts of free iP- and tZ-type Cks, the IPT1-deficient plants 
strongly indicate the existence of a second, tRNA-independ-
ent pathway in the moss. This pathway seems to be important 
in the production of the active Cks in Physcomitrella.

Given the Ck profile of the d|ipt1 mutant and the hence 
deduced existence of a tRNA-independent Ck biosynthetic 
pathway, the clustering of moss IPTs separate from adenylate-
IPTs leads to three possible hypotheses. (i) There is an alter-
native pathway mediating the tRNA-independent production 
of Cks by an as yet unknown enzyme. (ii) One or several of 
the other six moss IPTs belong to an as yet uncovered family 
of (maybe bryophyte-specific) IPTs which have convergently 
lost the capacity to bind tRNA, evolving adenylate-IPT func-
tionality in parallel to flowering plant ADP/ATP-IPTs. (iii) 
One or several of the moss IPTs indeed belongs to the same 
ADP/ATP-IPT family as those of flowering plants, but the 
phylogenetic signal connecting them has been obscured by an 
as yet undetermined mechanism. In the last case, the origin 
of plant adenlyate-IPTs would trace back to the ancestor of 
land plants. Based on the available data, especially the topol-
ogy and branch lengths of the PpIPT subtree, alternative (ii) 
seems to be the most probable evolutionary scenario.

The functionally confirmed tRNA-IPT PpIPT1 clusters 
basal to all other moss IPTs. Some of these six additional 
IPTs deviate substantially in their branch lengths, indicat-
ing changes in the rate of evolution. In order to see whether 
the increased amounts of iP- and tZ-type Cks are due to an 
increased expression of one of the remaining IPTs in the 
d|ipt1 mutant, real-time analyses have been performed. ipt2.1 
and ipt2.2 did not show expression either in the wild type or 
in the mutant. The remaining ipt genes (ipt3–ipt6) showed 
no strong or consistent changes (Supplementary Fig. S6 at 
JXB online). Which of the proposed evolutionary hypotheses 
ultimately can be verified clearly requires additional experi-
mental work. Therefore, studies have been initiated to char-
acterize functionally the in planta function of the remaining 
members of the Physcomitrella IPT family in order to clarify 
the identity of the unexpected tRNA-independent Ck bio-
synthetic pathway observed in Physcomitrella.

Supplementary data

Supplementary data are available at JXB online.
Figure S1. Vector card for pLNU-GFP_Ppipt1.
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Figure S2. Localization of IPT1 within Physcomitrella 
chloroplasts.

Figure S3. Generation and characterization of d|ipt1 
mutants.

Figure S4. Ck response of d|ipt1 mutants and the wild type.
Figure S5. Relative level of cytokinins in 22-day-old liquid 

cultures.
Figure S6. Relative expression of the ipt gene family in 

d|ipt1 mutants.
Table S1. Gene identifiers for the phylogenetic analyses 

performed.
Table S2. Average levels of intracellular free isoprene-type 

Cks in tissue.
Table S3. Average levels of extracellular free isoprene-type 

Cks in media.
Table S4. Average levels of tRNA-bound isoprene-Ck ribo-

sides in tissue.
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