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Temperature-sensitive E. coli mutants, designated

fts (filamentous temperature-sensitive), show a

filamentous phenotype because they are unable to

divide under non-permissive temperature. One of

these mutants, ftsZ, has a mutated gene that codes

for a protein that polymerizes to a ring (Z-ring)

during constriction division of bacterial cells [1].

Because the FtsZ protein is likely to represent the

evolutionary ancestor of the eukaryotic tubulins,

some essential proteins of the eukaryotic

cytoskeleton might be inherited from the bacterial

kingdom [2–5].

Plant ftsZ genes

In plants, FtsZ homologues are nuclear-encoded 

by a small gene family, transported into

chloroplasts, and are essential for chloroplast

division. Plant FtsZ was the first protein identified

as essential for the division of any eukaryotic

organelle [6–8]. Thus, bacterial cell division and

eukaryotic plastid division, which both proceed by

constriction, share, at least, the essential role of 

the FtsZ protein in this process. Although all

eubacteria seem to possess only one ftsZ gene,

plants seem to possess at least four different ftsZ

genes encoded by two different gene families,

indicating that FtsZ in plants has a more complex

role than in bacteria [9,10].

Rings and networks?

According to various models, FtsZ monomers

polymerize in bacteria to form filaments in the same

way as tubulin does in the eukaryotic cytoplasm.

These filaments are thought to be part of the

transient bacteria-dividing Z-ring [1]. Because

similar transient plastid-dividing rings (PD rings)

had been described for many years in plants [11],

the next question was, who will be the first person to

identify plant FtsZ as part of the plastid-dividing

ring? This question has been addressed mainly by

two different approaches: (i) labelled FtsZ-

antibodies have been used to highlight the protein

in wild-type cells using light and electron

microscopy, and (ii) FtsZ–green fluorescent protein

(GFP) fusions have been used to highlight the

protein in transgenic cells using confocal laser

scanning microscopy.

The first results for FtsZ-localization in plastids

were a complete surprise: in transiently

transformed Physcomitrella cells, FtsZ–GFP

monomers polymerized to highly organized

networks within the plastids (Fig. 1). Decoration of

a ring structure could be detected only rarely [9].

Subsequently, FtsZ was found to build a ring

structure within the chloroplasts of Lilium

longiflorum and Arabidopsis using the antibody-

approach (Figs 2 and 3), but filaments could be seen

only rarely [12,13].

Although it was tempting to believe that these

FtsZ-rings represent the electron-dense plastid

dividing ring, obviously these are different

structures [14], representing bacterial-based and

eukaryotic-based division rings [15]. Because these

FtsZ-rings are exactly what were expected from the

data achieved from bacteria, the previously observed

FtsZ-networks can be regarded as artefacts, possibly

the result of overexpression or caused by the

GFP-part of the fusion protein.
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Fig. 1. In vivo filamentation of PpFtsZ1. Transiently FtsZ1–green
fluorescent protein-expressing Physcomitrella patens cells were
analysed by confocal laser scanning microscopy two days after
transfection. They show a filamentous network within the plastids
termed the ‘plastoskeleton’. Photograph courtesy of Justine Kiessling.
Scale bar = 10 µm.



Re-discovery of the plastoskeleton?

In experiments conducted in my laboratory,

FtsZ–GFP-fusions were biologically active: like in

bacteria [16], these proteins influenced the division

process in a dose-dependent manner [9]. Moreover,

based on transmission electron micrographs (TEMs)

of genetically unmanipulated plant tissue,

filamentous structures were found in plastids several

years ago by different authors and were described as

microtubule-like-structures (MTLS) [17–19]. Most

strikingly, the models drawn from the older

TEM-results match the novel data obtained for

filamentous FtsZ–GFP proteins in plastids [20].

Therefore, it is likely that in intact, unmanipulated

plastids a filamentous protein network persists.

Based on these observations and bearing in mind

that FtsZ resembles an ancient tubulin, the term

‘plastoskeleton’was suggested for these filamentous

networks within the chloroplasts [9].

Why has this network not been identified with the

antibody-approach? Two of many possible reasons are

that it might need confocal laser scanning microscopy

to detect these tiny structures, or that the existing

antibodies might only detect FtsZ-filaments in a

specific conformation.

What is this complexity good for?

The intriguing question is why have plants evolved at

least four different ftsZ genes in at least two different

families from one eubacterial ancestor? Because all

FtsZ proteins in green plants are plastid-related

(and only additionally correlated with mitochondria

in non-green algae [21–23]), the most probable

answer is that the different proteins achieved

additional functions in plastids. One of these

additional functions might be the participation in a

persistent plastoskeleton that helps chloroplasts to
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Fig. 2. Phase-contrast image combined with fluorescent microscopy
image. A typical FtsZ2 ring from plastids of Lilium longiflorum is
visualized by fluorescein isothiocyanate (FITC). Photograph courtesy
of Toshiyuki Mori. Scale bar = 2 µm.

Fig. 3. Fluorescent microscopy of immunofluorescence labelling of
FtsZ2 in chloroplasts from wild-type Arabidopsis thaliana. Photograph
courtesy of Stanislav Vitha and Katherine W. Osteryoung. 
Scale bar = 10 µm.
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keep their shape and to change their shape in

different tissues. Without a plastoskeleton, what

other mechanism could ensure plastid integrity and

flexibility after the loss of the bacterial cell wall

during the establishment of endosymbiosis?

Amazingly, microbiologists again set the pace. Not

only did bacteria invent tubulin and other cytoskeletal

elements [24], but also actin [25].It is likely that they

also invented a persistent cytoskeleton [26] that was

inherited by the plastids during the establishment of

endosymbiosis. Therefore, plastids might be more

highly organized than previously suspected. The

existence of a persistent plastoskeleton still has to be

proven by a combination of molecular and cell

biological tools. But the door is now wide open for a

new chapter in cell biology.
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